Gamelle-RFID/code/cat_on_diet_feeder/cat_on_diet_feeder.ino

487 lines
12 KiB
C++

// Source : http://tronixstuff.com/2013/11/19/arduino-tutorials-chapter-15-rfid/
// with just a mod to print the tag nb before "Accepted"/"Rejected"
#include <SoftwareSerial.h>
#include <Servo.h>
#include <EEPROM.h>
//Configuration
const float SERVO_SPEED = 1.8;
const float OPEN_ANGLE = 10.0;
const float CLOSED_ANGLE = 160.0;
const float SERVO_PWR_TIME = 500; //time to stop powering servomotor after the end of move
const float DOOR_OPENED_TIME = 3000; //time to keep door open after last dectection on IR sensor
const float IR_DETECTION_THRESHOLD = 100; //IR dectection threshold
//Pin definitions
#define RED_LED 12
#define GREEN_LED 13
#define RFID_RX 2
#define RFID_TX 3
#define PROG_BUTTON 4
#define SERVO_CTRL 5
#define DOOR_BUTTON 6
#define IR_LED 7
#define IR_RECEIVE A0
// SPECIAL TAG DEFINITIONS
#define EMPTY_TAG {0,0,0,0,0,0,0,0,0,0,0,0,0,0}
#define UNWRITTEN_TAG {255,255,255,255,255,255,255,255,255,255,255,255,255,255}
const byte emptytag[14] = EMPTY_TAG;
const byte unwrittentag[14] = UNWRITTEN_TAG;
//Globals declarations
SoftwareSerial RFID(RFID_RX, RFID_TX); // RX and TX
Servo door_servo;
int data1 = 0;
int tag_ok = -1;
float servo_pos = OPEN_ANGLE;
bool door_open = 0; // door opened ?
bool door_moving = false; // door moving ?
long door_timer = 0; // timer to close the door
long servo_timer = 0; //timer to stop powering servomotor
long red_led_timer = 0;
byte newtag[14] = EMPTY_TAG; // used for read comparisons
byte * readeepromtag(short tagnb=0) {
// Read the n-th RFID tag in EEPROM
//First check if the # of tag is out of the capacity of EEPROM
//Return an null tag if so.
if ((tagnb+1)*14 > EEPROM.length()) {
Serial.print(F("Error: Tag Nb to high : "));
Serial.println(tagnb);
byte tag[14] = EMPTY_TAG;
return tag;
}
byte tag[14] = EMPTY_TAG;
for (int i=0; i<14; i++) {
tag[i]=EEPROM.read(i + tagnb*14);
}
//Serial.print(F("Tag nb "));
//Serial.print(tagnb);
//Serial.print(F(" : "));
//for (int z = 0; z < 14 ; z++) {
// Serial.print(tag[z]);
// Serial.print(",");
//}
//Serial.println("");
delay(2); //small delay to avoid misreading
return tag;
}
int maxeepromtags() {
// Return maximum number of tag that can be stored in EEPROM
return EEPROM.length() / 14;
}
boolean comparetag(byte taga[14], byte tagb[14]) {
// Compare two RFID tag
int x = 0;
for (int i = 0 ; i < 14 ; i++)
{
if (taga[i] == tagb[i]) x++;
}
return (x == 14);
}
int findtag(byte searchtag[14]) {
//Find a given tag in EEPROM and return tag rank or -1 if not found
byte *tag;
for (int i=0; i < maxeepromtags(); i++) {
tag = readeepromtag(i);
if (comparetag(tag, searchtag)) {
return i;
}
}
return -1;
}
void tagOK() {
// Actions when an known tag is read : Open the door or deleted the tag
// if the prog button is pressed
if (digitalRead(PROG_BUTTON))
// Prog button is not pressed : open the door
{
for (int z = 0; z < 14 ; z++) {
Serial.print(newtag[z]);
Serial.print(".");
}
Serial.println(F(" : Accepted"));
if (!door_open) {
Serial.println(F("Opening..."));
door_open = 1;
door_timer = millis() + DOOR_OPENED_TIME;
}
}
else
//if prog button is pressed : delete the tag from the EEPROM
{
delTag(newtag);
}
}
void tagNoOK() {
// Actions when an known tag is read : light the red LED for 1 sec or
// add the tag to the EEPROM if the prog button is pressed
if (digitalRead(PROG_BUTTON)) {
for (int z = 0; z < 14 ; z++) {
Serial.print(newtag[z]);
Serial.print(".");
}
Serial.println(F(" : Rejected"));
digitalWrite(RED_LED, HIGH);
//Light the red LED for 1s
red_led_timer = millis() + 1000;
}
else {
addNewTag(newtag);
}
}
void readRFID() {
// Read data from RFID & check if the tag is known (i.e. in EEPROM)
tag_ok = 0;
delay(100); // time for the data to come in from the serial buffer.
//Check up to 3 times if rejected to avoid mistakes
for (byte i=0; i<3; i++) {
// read tag numbers
for (byte z = 0 ; z < 14 ; z++) // read the rest of the tag
{
data1 = RFID.read();
newtag[z] = data1;
}
RFID.flush(); // stops multiple reads
// do the tag exist in EEPROM ?
if (findtag(newtag) >= 0) {
tag_ok=1;
}
if (tag_ok>0) {
break;
}
}
//Check if the tag is not an error before doing anything
if (!comparetag(newtag, unwrittentag)) {
// now do something based on tag type
if (tag_ok > 0) {
tagOK();
}
else {
tagNoOK();
}
}
// empty the data cache
while (RFID.available()) {
RFID.read();
}
}
void disableServo() {
//Disable servomotor once they stop moving
if (!door_moving and servo_timer < millis() and door_servo.attached()) {
door_servo.detach();
Serial.println(F("Servo disabled"));
}
}
void updateSerial() {
//Diconnect UART from RFID module when door is not closed to avoid unwanted
// small movements
if (RFID and (door_open or door_moving)) {
RFID.end();
}
else {
RFID.begin(9600);
}
}
void updateDoor() {
//Check if the door need to move and move it
//Apply door status
if (door_open) {
//Opening or open
if (servo_pos <= OPEN_ANGLE) {
//if door has to be open and already open, disable servomotor
if (door_moving) {
//Opening
Serial.println(F("Door : open"));
door_timer = millis() + DOOR_OPENED_TIME;
servo_timer = millis() + SERVO_PWR_TIME;
disableServo();
door_moving = false;
}
}
else {
//Keep opening the door
door_moving = true;
servo_pos -= SERVO_SPEED;
door_servo.attach(SERVO_CTRL);
door_servo.write(servo_pos);
//Serial.print(F("Door : opening "));
//Serial.println(servo_pos);
}
//Check opened-door timer
if (millis() < door_timer)
{
//Serial.print(F("Door timer :"));
//Serial.println(door_timer - millis());
}
else if (!door_moving)
{
door_open = 0;
}
}
else {
if (servo_pos >= CLOSED_ANGLE) {
//if door has to be open and already open, disable servomotor
disableServo();
if (door_moving) {
Serial.println(F("Door : closed"));
servo_timer = millis() + SERVO_PWR_TIME;
disableServo();
door_moving = false;
}
}
else {
//Keep closing the door
door_moving = true;
servo_pos += SERVO_SPEED;
door_servo.attach(SERVO_CTRL);
door_servo.write(servo_pos);
//Serial.print(F("Door : closing "));
//Serial.println(servo_pos);
}
}
}
void updateLED() {
//Update the LEDs state
if (door_open) {
//Opening or open
digitalWrite(GREEN_LED, HIGH);
digitalWrite(RED_LED, LOW);
}
else {
digitalWrite(GREEN_LED, LOW);
digitalWrite(RED_LED, LOW);
}
//Check the red LED timer and turn ON or OFF the LED
if (millis() < red_led_timer) {
digitalWrite(RED_LED, HIGH);
// Serial.print(F("Red LED timer : "));
// Serial.println(red_led_timer - millis());
}
else digitalWrite(RED_LED, LOW);
}
void addNewTag(byte tag[14]) {
//Add a new RFID tag to the known tags in EEPROM
Serial.print(F("Adding new tag to EEPROM : "));
for (int z = 0; z < 14 ; z++) Serial.print(tag[z]);
Serial.println("");
//Find first empty or unwritten space in EEPROM
int tagnb = findtag(emptytag);
if (tagnb < 0){
Serial.println(F("No empty space found."));
tagnb = findtag(unwrittentag);
if (tagnb < 0) {
Serial.println(F("No unwritten space found either. Can't save more tag."));
//If there is not enough space in EEPROM to add the tag : blink the red LED
// and stop
for (int i=0; i<4; i++) {
digitalWrite(RED_LED, HIGH);
delay(500);
digitalWrite(RED_LED, LOW);
delay(500);
}
return -1;
}
}
//Write the ne teg in EEPROM
Serial.print(F("New tag number : "));
Serial.println(tagnb);
Serial.print(F("Writing..."));
for (int z = 0; z < 14 ; z++) {
EEPROM.write(z+(tagnb*14), tag[z]);
}
//Check the written tag
Serial.print(F(" Checking..."));
int tmp = findtag(tag);
if (tmp != -1 and tmp == tagnb) {
//if OK : blink the green LED
Serial.println("OK");
for (int i=0; i<3; i++) {
digitalWrite(GREEN_LED, HIGH);
delay(500);
digitalWrite(GREEN_LED, LOW);
delay(500);
}
}
else {
//if something's got wrong blink the RED led
Serial.println("Failed");
for (int i=0; i<5; i++) {
digitalWrite(RED_LED, HIGH);
delay(500);
digitalWrite(RED_LED, LOW);
delay(500);
}
}
}
void delTag(byte tag[14]) {
//Delete a RFID tag from the known tags in EEPROM
Serial.print(F("Deleting tag from EEPROM : "));
for (int z = 0; z < 14 ; z++) {
Serial.print(tag[z]);
}
Serial.println("");
int tagnb = findtag(tag);
Serial.print(F("Tag number "));
Serial.println(tagnb);
//Write zeros in the place of the tag
Serial.print(F("Writing zeros..."));
for (int z = 0; z < 14 ; z++) {
EEPROM.write(z+(tagnb*14), 0);
}
//Check if the tag is realy deleted
Serial.print(F(" Checking..."));
int tmptag = readeepromtag(tagnb);
if (comparetag(tmptag, emptytag)) {
Serial.println("OK");
digitalWrite(GREEN_LED, HIGH);
delay(500);
digitalWrite(GREEN_LED, LOW);
delay(500);
}
else {
Serial.println("Failed");
for (int i=0; i<5; i++) {
digitalWrite(RED_LED, HIGH);
delay(500);
digitalWrite(RED_LED, LOW);
delay(500);
}
}
}
boolean IR_detection() {
//Detected if a cat is here with infrared barrier
int IR_ambient; // variable to store the IR coming from the ambient
int value; // variable to store the IR values
// detect 5 times in a row
for (int i=0; i<5; i++) {
digitalWrite(IR_LED, LOW);
delay(1);
//read ambiant IR reception before activating the IR LED to avoid parasites
IR_ambient = analogRead(IR_RECEIVE);
digitalWrite(IR_LED, HIGH);
delay(1);
value += IR_ambient - analogRead(IR_RECEIVE);
}
Serial.println(value);
digitalWrite(IR_LED, LOW);
if (value < IR_DETECTION_THRESHOLD) {
Serial.println(F("Cat is here..."));
return true;
}
Serial.println(F("No cat !"));
return false;
}
void setup() {
// start serial to PC
Serial.begin(115200);
// start serial to RFID reader
RFID.begin(9600);
// empty the data cache
while (RFID.available()) {
RFID.read();
}
// Pin mode for the LEDs
pinMode(GREEN_LED, OUTPUT);
pinMode(RED_LED, OUTPUT);
pinMode(IR_LED, OUTPUT);
digitalWrite(IR_LED, LOW);
//Mode for button and end-stop
pinMode(PROG_BUTTON, INPUT_PULLUP);
pinMode(DOOR_BUTTON, INPUT_PULLUP);
Serial.print(F("EEPROM length : "));
Serial.print(EEPROM.length());
Serial.print(F(" bytes ("));
Serial.print(maxeepromtags());
Serial.println(F(" tags)"));
Serial.println(findtag(newtag));
Serial.println(findtag(unwrittentag));
//Initialize door position
while (!door_moving) {
updateDoor();
}
door_open = 0;
}
void loop() {
tag_ok = -1;
//Lecture RFID
if (Serial and RFID.available() > 0 ) {
readRFID();
}
//Ouverture manuelle
if (!digitalRead(DOOR_BUTTON)) {
Serial.println("Ouverture par l'utilisateur.");
door_open = 1;
door_servo.attach(SERVO_CTRL);
door_servo.write(OPEN_ANGLE);
delay(1000);
while (digitalRead(DOOR_BUTTON)) {
delay(50);
}
door_servo.write(CLOSED_ANGLE);
delay(1000);
Serial.println("Fermeture par l'utilisateur.");
door_open = 0;
}
// Maintien de l'ouverture pour le delais DOOR_OPENED_TIME si présence
// détecté par capteur IR
if (door_open and !door_moving and IR_detection()) {
door_timer = millis() + DOOR_OPENED_TIME;
}
//Diverses mises à jour régulières
updateSerial();
updateDoor();
updateLED();
delay(10);
}